Catalytic Reforming

Write a blog post discussing the objectives of catalytic reforming and limits on catalytic reforming capacity in the U.S. refineries.


Catalytic reforming is another catalytic conversion process utilized by many petroleum refineries. This was introduced in a similar time frame as catalytic cracking – during World War II. Of course, there was a huge increase in the demand for high-octane gasoline during this time frame due to the necessity of fuel demanded from US aircraft.

There are four different reactions of catalytic reforming which all achieve the same objective of increasing the octane number. Dehydrogenation, dehydroisomerization, and dehydrocyclization are all highly endothermic reactions which produce aromatic compounds and hydrogen gas in large yields. These reactions require high temperatures and relatively low pressures, however the hydrogen pressure must be significantly high enough in order to avoid deactivating the catalyst surfaces due to coke deposition.

Hydrogen is the most valuable byproduct obtained from catalytic reforming. This is because this element can be used to essentially ‘clean up’ fuels further through processes of hydrotreating and hydrocracking. There are a couple of limits posed on catalytic reforming. Usually the feedstock must be hydrotreated before reforming can take place since the platinum catalyst used in reforming can be hindered by exposure to sulfur, nitrogen, or other heteroatom contaminants. Also, the United States and Europe hold a limit on the levels of benzene and the total aromatics for gasoline, therefore placing a limit on the amount of reformate able to be used in the blending of gasoline. The overall goal of catalytic reforming is to obtain high-octane-number gasoline while also acting as the sole internal source of the byproduct hydrogen.

Another limit pertaining to catalytic reforming is the occurrence of the undesirable side reaction of hydrocracking. This process consumes the valuable hydrogen byproduct while forming gaseous hydrocarbons which in turn decrease the yield of reformate. The principal approach to achieve high yields and high quality of reformate is increasing the selectivity of desirable reactions by means of finding the proper balance between acidic and metallic sites.

Leave a Reply